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Abstract—Scaling up imitation learning for real-world applica-
tions requires efficient and cost-effective demonstration collection
methods. Current teleoperation approaches, though effective, are
expensive and inefficient due to the dependency on physical robot
platforms. Alternative data sources like in-the-wild demonstra-
tions can eliminate the need for physical robots and offer more
scalable solutions. However, existing in-the-wild data collection
devices have limitations: handheld devices offer restricted in-
hand camera observation, while whole-body devices often require
fine-tuning with robot data due to action inaccuracies. In this
paper, we propose AirExo-2, a low-cost exoskeleton system for
large-scale in-the-wild demonstration collection. By introducing
the demonstration adaptor to transform the collected in-the-wild
demonstrations into pseudo-robot demonstrations, our system
addresses key challenges in utilizing in-the-wild demonstrations
for downstream imitation learning in real-world environments.
Additionally, we present RISE-2, a generalizable policy that inte-
grates 2D and 3D perceptions, outperforming previous imitation
learning policies in both in-domain and out-of-domain tasks, even
with limited demonstrations. By leveraging in-the-wild demon-
strations collected and transformed by the AirExo-2 system,
without the need for additional robot demonstrations, RISE-2
achieves comparable or superior performance to policies trained
with teleoperated data, highlighting the potential of AirExo-2
for scalable and generalizable imitation learning. Project page:
https://airexo.tech/airexo2.

I. INTRODUCTION

Scaling up generalizable robotic imitation learning in the
real world is essential for developing robust policies that can
be directly applied to practical scenarios [3, 6]. While tele-
operation has been commonly used to collect demonstrations
for imitation learning, it requires a physical robot platform to
record both observations and robot actions, raising costs due to
the expensive hardware involved. Despite its effectiveness, this
approach is costly and inefficient for scaling up demonstration
collection for imitation learning.

Recently, researchers have explored several alternative data
sources that can be scaled up at a lower cost, such as
human videos [4, 85, 91, 94, 102, 106] and in-the-wild
demonstrations [26, 18, 83, 93, 109]. Unlike traditional robot-
centric demonstrations collected through teleoperation, both
sources focus on human-centric demonstrations. This elimi-
nates the need for a physical robot during data collection,
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greatly reducing costs and enhancing scalability. For human
videos, actions are typically inferred using hand detection and
pose estimation [71, 91], or inferred from object pose during
interactions [32, 107]. In contrast, in-the-wild demonstrations
utilize additional devices to interface humans and robots,
capturing the observation and action data relevant to robotic
manipulations when the human is performing the task.

Current devices for collecting in-the-wild demonstrations
can be broadly categorized into two classes: handheld de-
vices [18, 22, 82, 83, 109] and whole-body devices [26,
15, 50]. Handheld devices are typically designed with end-
effectors identical to those of the robot. By equipping both
the handheld devices and the robot with in-hand cameras,
these methods leverage in-hand observations to ensure visual
consistency. However, they have two main limitations: (1) the
pose estimation of the devices often relies on visual SLAM
algorithms, which can introduce inaccuracies in capturing
actions (§VI-B), and (2) the in-hand camera has a limited field
of view and struggles to capture accurate depth information
during interactions between the robot and objects (§V-B). On
the contrary, whole-body devices are usually more accurate
in action capturing and offer flexible observation options.
However, they generally use in-the-wild demonstrations for
pre-training and require additional teleoperation data to fine-
tune the policy. The underlying reason for this limitation is
that the data from in-the-wild demonstrations still exhibits a
domain gap compared to the data from the real robot.

To address these challenges, we introduce the AirExo-2
system for large-scale in-the-wild demonstration collection and
adaptation. As shown at the top of Fig. 1, we propose a
demonstration adaptor to transform the in-the-wild demonstra-
tions into pseudo-robot demonstrations, both observations and
actions from the in-the-wild demonstrations can be effectively
aligned with the robot domain. This transformation enables
the demonstrations to be directly applicable to downstream
imitation learning policies. From the hardware perspective,
we develop an updated exoskeleton built upon AirExo [26],
tailored for easy demonstration adaptation process. It provides
a stronger mechanical structure and more accurate calibration,
making the action capturing more precise and the system more
robust. Comprehensive analyses are conducted to evaluate the
efficiency and accuracy of the AirExo-2 system in collecting
demonstrations.

Beyond scaling up in-the-wild demonstration collection,
developing a robust policy is crucial for effectively utilizing

https://airexo.tech/airexo2


Demonstration Adaptor                                            _

In
-t
he

-W
ild

D
em

o
ns
tr
at
io
ns

Ps
eu

d
o
-R
o
b
o
t

D
em

o
ns
tr
at
io
ns

AirExo-2

State & Action Adaptor Image Adaptor Depth Adaptor

RI
SE

-2

Sparse 3D 
Encoder

Dense 2D 
Encoder

A
ct

io
n 

G
en

er
at

or

Sp
at

ia
l A

lig
ne

r

policy training

Robot action execution

point cloud

RGB image

observation

policy zero-shot deployment

32.5

40.0

65.0

72.5

95.0

57.5

90.0

Teleop. Demo.
AirExo-2 Demo.ACT

DP

CAGE

RISE

RISE-2

RISE

RISE-2

Success Rate (%)
0 20 40 60 80 100

Fig. 1: Overview of the AirExo-2 System and the RISE-2 Policy. (Top) The AirExo-2 system enables the scalable collection and effective
adaptation of in-the-wild demonstration data. A demonstration adaptor is employed to convert in-the-wild demonstrations into pseudo-robot
demonstrations that are directly usable for training imitation learning policies. (Bottom) The proposed generalizable policy, RISE-2, can
effectively leverage these converted pseudo-robot demonstrations for learning manipulation skills, enabling zero-shot deployment on real-
world dual-arm robots without requiring any teleoperated demonstrations, and achieving results comparable to policies trained with the same
amount of teleoperated data.

these demonstrations. To this end, we introduce RISE-2, a
generalizable policy that seamlessly integrates both 2D and
3D perceptions, as shown at the bottom of Fig. 1. Experiments
show that RISE-2 not only outperforms previous imitation
learning policies in in-domain evaluations, but also surpasses
prior generalizable policies in several out-of-domain scenarios,
even when trained on a limited number of demonstrations
from a narrow domain. Leveraging the strong generaliza-
tion capabilities of RISE-2, we show that using in-the-wild
demonstrations collected and adapted by the AirExo-2 system,
without requiring additional demonstrations from the robot
domain, our policy achieves results comparable to, or even
exceeding, those of imitation policies trained on an equivalent
amount of teleoperated data.

II. RELATED WORKS

A. Scaling up Demonstration Collection

Demonstration data is essential for advancing imitation
learning in robotic manipulation, as it serves as a foundation
for learning complex and structured behaviors from expert
demonstrations. Recent research on data scaling laws [56] has

revealed that similar scaling patterns emerge in imitation learn-
ing for robotic manipulation, analogous to those previously
identified in natural language processing [46] and computer
vision [31, 72] fields. This highlights the importance of scaling
up the demonstration collection.

Currently, there are four main directions for acquiring
demonstration: teleoperation, generation in simulation, human
video, and in-the-wild data collection.

Teleoperation. A straightforward method for collecting
real-world robot demonstrations is human teleoperation, which
directly captures demonstrations in the robot domain and is
widely regarded as one of the most effective data collection
techniques in real-world robotic imitation learning. However, it
presents several challenges, especially when it comes to scala-
bility. Scaling up teleoperated-based demonstration collection
requires increasing the number of both robots and teleoper-
ation devices, with robots being particularly costly to scale.
Therefore, current large-scale robotic manipulation datasets
collected through teleoperation [8, 20, 25, 42, 49, 92, 104]
usually require significant human and physical resources in the
data collection process. Another drawback is inefficiency, as



teleoperating robots to complete tasks is far less intuitive than
performing the tasks directly with human hands, leading to
high learning costs [60] and suboptimal demonstrations [11].

Generation in Simulation. This line of research addresses
the demonstration scaling problem by automatically generating
or augmenting demonstrations in simulation. Several studies
generate demonstrations with large language models and skill-
level agents [40, 67, 99, 101], while other approaches augment
few human teleoperated demonstrations through replay [1, 37,
45, 65, 97]. Although these methods simplify the demon-
stration generation process, policies trained on such demon-
strations often require additional sim-to-real adaptation before
they can be applied in real-world scenarios.

Human Video. Researchers have also explored leveraging
internet-scale human videos for robotic manipulation policy
learning. Some approaches [2, 62, 63, 64, 68, 77, 87, 111]
focus on visual representation learning from human videos,
while others [4, 10, 29, 75, 103, 108] propose pre-training
the policy backbone with auxiliary video or latent prediction
objectives. Since accurately extracting human hand states and
3D spatial trajectories from 2D videos remains challeng-
ing [66], it is still difficult to convert human videos into usable
demonstrations for direct training the policies without fine-
tuning on additional in-domain robot demonstrations.

In-the-Wild Data Collection. In-the-wild data refers to
demonstrations collected by humans using specialized hard-
ware devices, such as hand-held grippers [18, 22, 82, 83,
109], hand-held cameras [21, 98], VR/AR glasses [15, 47, 50],
motion-capture gloves [93], and exoskeletons [26, 50]. These
devices act as a bridge between humans and robots, translating
human hand motions into corresponding robot end-effector ac-
tions during demonstration collection. Without the dependency
of physical robots, it is cost-effective for collecting in-the-
wild demonstrations at scale. Nonetheless, challenges remain
in improving the accuracy of such motion translation and
addressing visual inconsistencies between humans and robots.

B. Learning from In-the-Wild Demonstrations

Despite promising in terms of scalability, two domain gaps
pose obstacles in learning from in-the-wild demonstrations: the
kinematic gap and the visual gap [26, 50]. The kinematic gap
refers to the discrepancy in motion translation between humans
and robots, where inaccuracies can affect action quality to
some extent. The visual gap, on the other hand, pertains
to the fact that visual information captured in in-the-wild
demonstrations often includes specialized devices and human
hands, whereas the visual information in robot demonstrations
and deployments should contain the robot itself.

Kinematic Gap. The kinematic gap can be bridged using
either visual or mechanical methods. DemoAT [109] employs
structure-from-motion [81] to approximate the end-effector
pose from a sequence of RGB images. Other visual meth-
ods leverage off-the-shelf pose estimation frameworks from
commercial cameras, such as GoPro [18], iPhone Pro [21, 22,
83, 98], RealSense T265 [15, 82, 93], and Aria glasses [47].

Mechanical methods typically build isomorphic devices [26,
50] that obtain the robot poses from angle encoder readings.

Visual Gap. Hand-held devices [18, 22, 82, 83, 109] rely
solely on in-hand cameras for visual observation and employ
the same end-effector during robot deployment to prevent
visual inconsistencies. Most other methods address the visual
gap by incorporating additional real robot demonstration data
for fine-tuning or co-training [21, 26, 47, 98], or by using
human-in-the-loop techniques to collect corrective behaviors
during policy deployment [15, 93]. M2R [50] utilizes cropped
observations with limited fields of view to reduce the impact
of visual inconsistencies.

C. Generalizable Manipulation Policy

Direct learning from in-the-wild demonstrations emphasizes
the need for a generalizable manipulation policy. Such a policy
must effectively transfer the skills learned from in-the-wild
demonstrations to the robot during real-world deployment.
A generalizable policy is defined by its ability to adapt to
new domains or environments, even when trained with limited
demonstrations from a restricted domain [105]. Specifically, it
should be capable of generalizing across variations such as
different camera perspectives, backgrounds, objects, and even
embodiments.

Although many behavior-cloning-based [73] robotic manip-
ulation policies [17, 27, 28, 84, 116] have demonstrated strong
performance during in-domain evaluations, they often struggle
in out-of-distribution scenarios, leading to compounded errors
and task failures [96, 105]. While large-scale pre-training on
real-world robot demonstration data can improve the gener-
alization ability of a robotic manipulation policy to some
extent [5, 8, 20, 42, 52, 58, 69, 100, 120], it does not overcome
the inherent upper bound of the policy’s generalization ability,
i.e., its fundamental capacity to adapt across diverse domains
and contexts in manipulation tasks.

Leveraging 3D perceptions [14, 27, 28, 96, 110] and 2D
foundation models [9, 57, 74, 105, 112] are two promising av-
enues towards generalizable manipulation policies. The former
utilizes geometric cues to supplement the policy’s understand-
ing of the physical environment, while the latter harnesses
the rich semantic features of 2D foundation models [16,
54, 70, 76, 79] to improve the policy’s ability to recognize
and interpret complex object and scene information. Recent
studies [44, 114, 115] have explored combining these two
approaches to further enhance policy performance. However,
challenges remain in effectively integrating these insights for
better generalization across diverse manipulation domains.

III. AIREXO-2: COLLECTING AND ADAPTING
IN-THE-WILD DEMONSTRATIONS

A. Overview

AirExo-2 prioritizes in-the-wild demonstration collection
and subsequent data adaptation. Our goal is to efficiently
collect and adapt in-the-wild demonstrations into pseudo-
robot demonstration for direct use in training real-world
robotic manipulation policies, which is particularly suitable
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Fig. 2: Illustration of the Demonstration Adaptor. We propose a demonstration adaptor to convert in-the-wild demonstrations into pseudo-
robot demonstrations. It comprises three modules: an operation space adaptor for kinematic transformation, an image adaptor for visual
processing, and a depth adaptor for depth adaptation.

for scaling up demonstration collection at a low cost. From
this perspective, the main issues that need to be solved are:
D1. The operation space from the in-the-wild demonstrations

should be aligned with those of the robot, bridging the
kinematic gap.

D2. The visual observations from both in-the-wild demonstra-
tions and robot deployment should be transformed into a
unified domain, addressing the visual gap.

These two issues require a robust hardware and accurate cal-
ibration process to ensure the action capturing aligns well with
the robot space, therefore facilitating subsequent demonstra-
tion adaptation. We detail the updated exoskeleton hardware
design and calibration process in Appendix A and Appendix B,
respectively. The whole system retains the low-cost advantage
of AirExo [26], with the dual-arm demonstration collection
platform (excluding the camera) priced at only $600. All
hardware models, data collection code, and installation guides
will be open-sourced. The demonstration adaptation process
is introduced as follows.

B. Demonstration Adaptor

As discussed in §II-B, in-the-wild demonstrations often
exhibit significant visual and kinematic differences from robot
demonstrations, hindering their direct use for robotic manip-
ulation policy learning. Prior approaches typically avoid the
visual gap by using in-hand cameras or relying on pre-training
and fine-tuning. In contrast, our AirExo-2 system solves the
visual gap by employing adaptors to convert in-the-wild obser-
vations into pseudo-robot observations. Together with an oper-
ation space adaptor that unifies the coordinate system of both
demonstrations into the camera coordinates, these components
form the demonstration adaptor. The demonstration adaptor
helps align the in-the-wild data more closely with the robot’s
operating conditions, enabling the learned policies to be more

directly transferable to real-world robotic manipulation tasks.
Fig. 2 shows an overview of our demonstration adaptor.

Operation Space Adaptor (D1). Theoretically, we can
transform the end-effector poses of both arms into the device
base for both AirExo-2 and the dual-arm robot platform,
as they are morphologically identical. However, achieving
such precision during the installation of the robotic arms is
challenging, which means that we need to treat the dual-
arm robot system as two separate single-arm robot systems in
practice. This results in the device base not being a universal
coordinate frame. Therefore, we opt to project all states and
actions into the global camera coordinate system using the
calibration results.

Image Adaptor (D2). With the recorded AirExo-2 encoder
readings and the calibrated transformation between the global
camera and the AirExo-2 base, we integrate the AirExo-2
model into the Open3D rendering engine [117]. Using similar
methods as previously described in the calibration section, we
can render RGB-D and mask images of AirExo-2. Due to the
one-to-one joint mapping between AirExo-2 and the dual-arm
robot, we can also render the corresponding RGB-D and mask
images of the dual-arm robot.

In addition to obtaining the AirExo-2 mask from the ren-
derer, we also need to address the visual information related to
the human hands in the in-the-wild demonstrations. To achieve
this, we use SAM-2 [78] to generate a consistent hand mask
throughout the demonstration video. By merging this mask
with the AirExo-2 mask, we can identify the regions where
the in-the-wild demonstration visually differs from the robot
demonstration. Next, we apply the pre-trained video inpainting
model ProPainter [118] to fill in the masked areas, effectively
removing the human embodiment information from the images
to generate agent-agnostic images. Inspired by [12], we then
fine-tune a pre-trained Stable Diffusion 1.5 [79] model with



D
en

se
E

nc
o

d
er

C
am

er
a 

Pr
o

je
ct

io
n RISE-2Color Image

Depth Image

Semantic Feature Map

Generated Actions

Point Cloud Sparse Geometric Features

Sparse Semantic Features

C
am

er
a 

Pr
o

je
ct

io
n

Sp
ar

se
E

nc
o

d
er Sp

at
ia

lA
lig

ne
r

A
ct

io
n 

G
en

er
at

o
r

Sp
ar

se
 P

o
in

t 
To

ke
ns

Tr
an

sf
o

rm
er

Gaussian Noises

Generated Actions

Diffusion Head

Readout A
ct

io
n 

G
en

er
at

or

W
ei

g
ht

ed
 S

p
at

ia
l 

In
te

rp
o

la
ti

o
n

Fe
at

ur
e 

Fu
si

o
n

Sp
ar

se
 P

o
in

t 
To

ke
ns

Sp
at

ia
l A

lig
ne

r

Geometric 
Feature

Semantic 
Feature

Aligned 
Feature

Sp
ar

se
 P

o
in

t 
To

ke
ns

Nearest 
Neighbors

SPE

Fig. 3: RISE-2 Policy Architecture. RISE-2 takes an RGB-D observation as input and generates continuous actions in the camera frame.
It is composed of four modules: 1) the color image is fed into the dense encoder to obtain semantic features organized in 2D form, which
is then projected to sparse 3D form using reference coordinates; 2) the depth image is transformed to a point cloud and fed into the sparse
encoder to obtain the local geometric features of seed points; 3) in the spatial aligner, the semantic features and the geometric features are
aligned and fused using their 3D coordinates; 4) in the action generator, the fused features are converted to sparse point tokens, mapped
to action space using a transformer and sparse positional encoding (SPE), and decoded into continuous actions by a diffusion head.

ControlNet [113] to generate photorealistic robot images from
the rendered robot images. These generated robot images are
then extracted using the robot mask and superimposed onto the
inpainted images, producing the final pseudo-robot images.

Depth Adaptor (D2). For depth adaptation, we first capture
a reference depth image of the empty workspace using the
same camera setup, serving as a universal background refer-
ence. For each task, we identify static objects in the scene and
record their depth values in the first frame as a demonstration-
specific background reference. Using the merged mask pro-
vided by the image adaptor, we determine the regions of the
depth map requiring adaptation and replace them with corre-
sponding values from the demonstration-specific background.
This process effectively removes depth information associated
with human embodiment while preserving the scene’s spatial
consistency. Finally, by integrating the inpainted depth with
the rendered robot depth, we can obtain the adapted depth.

IV. RISE-2: A GENERALIZABLE POLICY FOR LEARNING
FROM IN-THE-WILD DEMONSTRATIONS

A. Overview

Although we have transformed in-the-wild demonstrations
into pseudo-robot demonstrations, inherent domain gaps such
as differences in camera perspectives remain. Therefore, a
generalizable policy is crucial for efficiently and effectively
learning from these transformed in-the-wild demonstrations
produced by the AirExo-2 system.

As discussed in §II-C, 3D perception and 2D foundation
models play complementary roles in creating a generalizable
policy. 3D perception captures view-invariant geometric fea-
tures of the scene, while 2D foundation models utilize their

extensive knowledge to extract rich semantic features. Notably,
3D perception is especially beneficial for learning from in-the-
wild demonstrations, as it explicitly infers spatial positions
using a single camera, unlike 2D policies that often rely on
multiple cameras to determine positions indirectly.

Building on these insights, we propose a 3D generalizable
policy, RISE-2, to facilitate efficient learning from in-the-wild
demonstrations and achieve robust task performance. Built
upon RISE [96], our RISE-2 policy addresses the following
limitations of the original approach:

P1. The raw point and color information are jointly encoded
in RISE, causing geometric and semantic features to inter-
fere with each other, which leads to consistent positional
offsets in output actions when the background changes.

P2. The inevitable noise in depth sensors often results in
low-quality point cloud textures, making it challenging to
extract rich semantic features solely from point cloud data
and limiting the model’s scene understanding capabilities.

P3. The sparse encoder lacks pretraining on large-scale 3D
scene datasets, hindering its ability to generalize across
varying instances, backgrounds, and embodiments. More-
over, large-scale pretraining for 3D data introduces sig-
nificant computational overhead, which is impractical for
a shallow encoder.

Based on the above limitations, the design of RISE-2
focuses on the precise feature fusion of 2D images and 3D
point clouds to leverage the advantages of 2D vision in
semantic information and 3D vision in spatial information
simultaneously.



B. Policy Architecture

As shown in Fig. 3, RISE-2 consists of four modules: a
sparse encoder for 3D geometric feature extraction, a dense
encoder for 2D semantic feature extraction, a spatial aligner
for 2D-3D feature fusion and an action generator to decode
visual features into actions. The implementation details are
listed in Appendix E.

Sparse Encoder (P1). 3D point cloud data contains rich
spatial structure information, which greatly facilitates the
extraction of local geometric features. Such property has been
successfully applied in general grasping [23, 24, 95]. RISE
featurizes the point cloud data with raw color information to
obtain the semantic cues and geometric cues simultaneously,
but fails to distinguish the coordinate shift and the color
shift. RISE-2 inherits the sparse 3D encoder [19] from RISE,
but removes the color information to obtain pure geometric
features. We denote this module by Es, which implements the
transformation from depth image to sparse geometric features:

Es : (D,K)→ (Fg,Cg), (1)

where D denotes the observed depth image, K denotes the
corresponding camera intrinsic, and Cg = {cg

i ∈ P} denotes
the seed points after network down-sampling. D is firstly
converted to a point cloud P using camera intrinsic K. The
sparse network takes P as input and extracts the local ge-
ometric features Fg = { f g

i }, where f g
i is the corresponding

feature vector of cg
i . This lightweight encoder enhances the

efficiency of sparse feature extraction, ensuring the real-time
performance of the policy.

Dense Encoder (P2 and P3). A generalizable policy
requires rich semantic features to understand the scene, while
the low-quality texture of point cloud data poses a challenge to
this demand. Unlike RISE, RISE-2 adopts a dense 2D encoder
to process organized color information, which is denoted by
Ed . Ed implements the transformation from color image to
dense semantic features:

Ed : (I,D,K)→ (Fs,Cs), (2)

where I denotes the observed color image and Fs = { f s
i }

denotes the output semantic feature map with the width w
and the height h. Since Fs is densely organized in 2D form,
we also compute its reference 3D coordinates Cs = {cs

i} for
the mapping to sparse form. Let the raw point cloud P be
organized in 2D form, Cs is computed by:

Cs = AdaptiveAvgPool2d(P, [w,h]), (3)

where AdaptiveAvgPool2d(·, [w,h]) applies an average pooling
function to P, and the output shape is w× h. By leveraging
continuous color information distributed in high-resolution
data, Ed significantly enhances the policy’s ability to capture
the details in the scene.

One significant advantage of the dense encoder is the
usage of visual foundation models, offering highly generalized
visual representations that excel across diverse tasks and
domains [105]. RISE-2 employs DINOv2 [70] fine-tuned with

LoRA [39] to implement Ed . Such design improves the pol-
icy’s robustness and adaptability in understanding contextual
relationships within the environments.

Spatial Aligner (P1). RISE-2 extracts the geometric fea-
tures and the semantic features using separate encoders, posing
a challenge for the fusion of features distributed in different
domains. One solution is to directly concatenate the two ag-
gregated feature vectors, but it loses fine-grained local features
which are vital for precise perception. Another alternative
upsamples Fs to the size of the original dense image I, projects
it to the point cloud P, and downsamples the features to align
with the seed points Cg [114]. This approach incurs a high
computational cost, decreasing the efficiency of policy training
and deployment.

Instead, RISE-2 utilizes a spatial aligner to efficiently fuse
the two kinds of features based on their 3D coordinates Cg
and Cs. For a point cg

i ∈ Cg output by the sparse encoder Es,
we compute its nearest neighbors Ni = {ni

j| j = 1, · · · ,M} from
Cs output by the dense encoder Ed . The semantic feature of
cg

i is computed by weighted spatial interpolation:

f ∗i =
ΣM

j=1 f s
j/dist(cg

i ,n
i
j)

ΣM
j=11/dist(cg

i ,n
i
j)
, (4)

where dist(ci,c j) is the Euclidean distance between ci and c j.
The aligned feature of point cs

i is

fi = Concat( f g
i , f ∗i ). (5)

By aligning the seed points Cg with the dense feature map
Fs using 3D coordinates, we can easily obtain the precise
semantic features of points in different locations. The aligned
features are then fused to high-level sparse representations
using sparse convolution layers [19]. The visualization results
of applying weighted spatial interpolation to the 2D feature
map can be found in Appendix H.

Action Generator. The action generator adopts a similar
architecture to RISE, which uses a transformer [90] to approx-
imate the mapping from point features with sparse positional
encoding to the action space, and a diffusion head [17, 33,
43] to generate the action chunk [116]. The transformer in
RISE-2 is in a decoder-only form, taking sparse point tokens
and a readout token as input. Conditioning on the feature of
the readout token, the diffusion head decodes the Gaussian
noises into continuous actions. The generated actions are in
the camera frame to ensure consistency across different scenes
and camera views. The translations are in absolute positions
and the rotations are in 6D representation [119].

V. EXPERIMENTS

In this section, we aim to answer the following research
problems.
Q1. Are in-hand cameras sufficient for effectively perceiving

and executing manipulation tasks?
Q2. Does RISE-2 outperform previous policies in in-domain

evaluations?
Q3. Can RISE-2 generalize to environmental disturbances,

such as unseen objects and backgrounds?



Collect Toys. Two cotton toys are placed on the left and right sides of a table, with a square basket in the center. The goal is to pick up each toy with 
the corresponding arm and place it into the basket. 

Lift Plate. An induction cooker and a double-handle plate are placed on the table. The goal is to use both arms to grasp the handles of the plate, lift 
it, and place it onto the cooker. 

Fig. 4: Tasks. We design two tasks to evaluate the in-domain and generalization capabilities of the RISE-2 policy. Additionally, we assess
the ability of the AirExo-2 system to transform high-quality pseudo-robot demonstrations derived from in-the-wild data. These transformed
demonstrations are then used to train downstream policies, allowing us to evaluate their transferability to real robot platforms.

Q4. Can generalizable policies like RISE-2, trained exclu-
sively on pseudo-robot demonstrations collected and
transformed by the AirExo-2 system, be directly deployed
on a real robot?

Q5. How important is the demonstration adaptor of the
AirExo-2 system for transferring policies trained solely
on in-the-wild demonstrations to a real robot platform?

Q6. Can the combination of the AirExo-2 system and the
RISE-2 policy enable the robot to perform more diverse
and complex robotic manipulation tasks?

A. Setup

Platform. Our dual-arm robot platform uses two Flexiv
Rizon 4 robotic arms, each equipped with a Robotiq 2F-85
gripper. An Intel RealSense D415 camera is mounted on top
of the robot platform to capture global observations, while two
additional Intel RealSense D415 cameras are mounted on the
wrists of each robot arm to provide in-hand observations for
2D image-based policies as additional views.

Tasks. As shown in Fig. 4, we designed two tasks to
evaluate the in-domain and generalization performance of the
RISE-2 policy, as well as to assess the overall effectiveness of
the AirExo-2 system in transferring policies of different tasks
trained on in-the-wild demonstrations to a real robot.

Data Collection. The teleoperated demonstrations are col-
lected using AirExo [26], while the in-the-wild demonstrations
are gathered and transformed through our proposed AirExo-
2 system. For each task, we collect 50 teleoperated demon-
strations for policy evaluation and 50 in-the-wild demonstra-
tions to test whether a generalizable policy can be zero-
shot deployed to the robot platform using the in-the-wild
demonstrations collected and processed by AirExo-2.

Baselines. We compare RISE-2 against a range of repre-
sentative policies based on 2D images and 3D point clouds,
including: (1) ACT [116], which employs transformers to map
image observations and proprioception to robot action chunks;
(2) Diffusion Policy (DP) [17], which formulates action pre-
diction as a diffusion denoising process [34, 86] conditioned
on the image observations; (3) CAGE [105], an extension of

DP that incorporates visual foundation models [70], a causal
observation perceiver [41], and an attention-based diffusion
action head for improved generalization; and (4) RISE [96],
a 3D imitation policy that leverages a sparse 3D encoder for
efficient point cloud perception.

Evaluation Protocols. All policies are deployed on a work-
station with an NVIDIA RTX 2060 SUPER GPU. Following
the procedure outlined in [18, 105], we adopt a consistent
evaluation method for each policy to minimize performance
variation and ensure reproducibility. Specifically, we generate
uniformly distributed test positions randomly before each task
evaluation. The workspace is set up identically across different
policies and test environments, and success rates are recorded
for each test case. Each policy is evaluated over 20 consecutive
trials per task, and the success rates are computed accordingly.

B. Case Study: Are In-Hand Cameras Sufficient?

We conducted a case study to investigate whether in-hand
cameras are sufficient for many manipulation tasks. We select
the Collect Toys task as an example and utilize CAGE [105]
as the policy for this case study.

Method # Cameras Success Rate

CAGE (global only) 1 45.0%
CAGE (in-hand only) 2 60.0%

CAGE (global + in-hand) 3 72.5%

TABLE I: Case Study Results. In this case study, we employ
CAGE with relative action representations following its original
implementation [105]. The in-domain and generalization experiments
afterward will use CAGE with absolute action representations. For
details about action representations, please refer to Appendix F.

In-hand cameras alone are often insufficient for ma-
nipulation tasks and may pose additional obstacles on
policy learning (Q1). As shown in Tab. I, neither global
nor in-hand cameras alone provide adequate observations
for 2D image-based policies to achieve strong performance.
Recent work [96] has demonstrated that using only a global
camera enables a 3D imitation policy to outperform 2D multi-
view image-based policies, highlighting the importance of 3D
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Fig. 6: Visualization of In-hand Camera Observation. In-hand
cameras often produce low-quality depth observations during inter-
actions with objects, limiting their usages for most 3D point cloud-
based policies.

information for scene understanding. However, as illustrated
in Fig. 6, in-hand cameras may produce incomplete depth
information when the robotic arm approaches an object,
making them unsuitable for 3D point-cloud-based policies.
Consequently, relying solely on in-hand cameras can degrade
the performance of the policies, particularly for 3D policies
that rely on complete and accurate depth information to
achieve superior performance.

C. Policy In-Domain Evaluation: RISE-2

Method Collect Toys Lift Plate

Overall Left Right Grasp Place

ACT [116] 32.5% 50% 15% 45% 20%
DP [17] 40.0% 25% 55% 30% 30%

CAGE [105] 65.0% 70% 60% 55% 55%
RISE [96] 72.5% 60% 85% 75% 75%

RISE-2 (ours) 95.0% 90% 100% 85% 85%

TABLE II: In-Domain Evaluation Results of Different Policies
on the Collect Toys and the Lift Plate Task. Our RISE-2 policy
outperforms baselines during in-domain evaluations.

RISE-2 achieves significantly better performance than
previous policies during in-domain evaluations (Q2). Tab. II
reports the success rates for both tasks, highlighting the
effectiveness of RISE-2 in handling diverse manipulation chal-
lenges. In the Collect Toys task, RISE-2 consistently outper-
forms all baselines across both arms, leading to a substantially
higher overall success rate. This shows the capability of RISE
in achieving Similarly, in the Lift Plate task, which requires
precise motion execution, RISE-2 demonstrates superior accu-
racy in predicting fine-grained robotic actions, surpassing all
baselines. These results show that RISE-2 not only improves
overall task success but also enhances control precision, mak-
ing it suitable for complex manipulation scenarios.

The improvement of RISE-2 over RISE also showcases the
significance of using separate 2D and 3D encoders along with
spatial feature alignment. This design effectively decouples
geometric and semantic feature extraction, allowing them to
be seamlessly integrated through coordinate-based fusion via
spatial aligner, leading to more accurate and robust represen-
tations for manipulation tasks.

D. Policy Generalization Evaluation: RISE-2

We select the Collect Toys task to conduct a generalization
experiment to evaluate the robustness of different policies
under varying levels of environmental disturbances. As illus-
trated in Fig. 5 (left), we introduce two types of disturbances:
background variations and object differences. To further in-
vestigate the role of disentangling geometric and semantic
features in generalization and assess the impact of different
visual backbones for semantic feature extraction, we include
a variant of RISE-2 that replaces the DINOv2 encoder with a
ResNet-18 encoder [30]. We then follow the same evaluation
protocol to compute success rates, enabling a comprehensive
comparison of each policy’s generalization capability.

RISE-2 exhibits strong generalization performance to
different environmental disturbances (Q3). As shown in



Fig. 5 (middle), under single disturbances such as background
or object replacement, RISE-2 maintains high performance,
experiencing only a 10% success rate drop while still signif-
icantly outperforming previous methods. Notably, even when
the DINOv2 encoder is replaced with a vanilla ResNet-18
encoder, although the performance is lower than the original
RISE-2, it still demonstrates a reasonable level of gener-
alization ability and surpasses baseline policies. This result
further validates our design choice of employing separate
encoders for 3D geometric and 2D semantic feature extraction,
effectively enhancing policy robustness. To achieve even better
generalization performance under disturbances, using visual
foundation models like DINOv2 [70] as 2D dense encoders is
essential, as they can leverage the extensive semantic knowl-
edge acquired through large-scale pre-training. This allows
for the extraction of more generalizable features from the
manipulation scene, ultimately elevating the generalization
ability of RISE-2.

RISE-2 even shows decent generalization performance
when facing a combination of disturbances (Q3). The
results in Fig. 5 (right) show that RISE-2 retains its gener-
alization performance to a large extent even under combined
disturbances. RISE [96] performs unexpectedly well under
the combined disturbances, even surpassing its performance
when only object replacement is applied. By observing the
experimental process, we hypothesize that different distur-
bances may introduce different offsets in the predicted ac-
tion of RISE, and sometimes, combining these disturbances
may cause the offsets to cancel each other out, leading to
unexpectedly good performance. Instead, RISE-2 does not
exhibit this phenomenon, as it consistently demonstrates strong
performance across all types of generalization experiments,
regardless of the disturbance combination.

E. System Evaluation: AirExo-2
Our previous experiments have shown that RISE-2 is a

generalizable policy, making it ideal for learning from in-the-
wild demonstrations collected and transformed by AirExo-
2. Accordingly, we train the policy using the pseudo-robot
demonstrations processed by AirExo-2, and then zero-shot de-
ploy the trained policy on the dual-arm robot platform, without
using any additional robot demonstrations. For comparison, we
also include RISE [96] in this experiment.

The AirExo-2 system provides high-quality pseudo-
robot demonstrations that can be directly used to train
generalizable policies like RISE-2, enabling successful
zero-shot deployment of the trained policies to the real
robot platform with reasonable performance (Q4). As
shown in Fig. 7, RISE-2 performs well when trained solely
on pseudo-robot demonstrations collected and transformed
by the AirExo-2 system. The policy achieves satisfactory
success rates for both tasks, with only a slight performance
drop compared to learning from teleoperated demonstrations.
Another policy, RISE, also shows good performance when
deployed zero-shot, though with a slightly larger performance
drop than RISE-2. These results underscore the importance
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Fig. 7: System Evaluation Results. Trained using demonstrations
collected and adapted by the AirExo-2 system, without any access to
robot data, the policies maintain reasonable performance, highlighting
the overall effectiveness of the AirExo-2 system.

Method Success Rate (%)

w.o. adaptor w. adaptor

RISE [96] 30.0% 57.5%
RISE-2 (ours) 52.5% 90.0%

TABLE III: Ablation Results of Demonstration Adaptors. While
generalizable policies trained with raw in-the-wild demonstrations
can occasionally transfer to real robot platforms, the inherent embod-
iment gap hinders their performance. Our proposed demonstration
adaptor, especially visual adaptors, effectively bridges this domain
gap and enhances the performance of policies during direct transfer,
demonstrating its importance in this process.

of having a generalizable policy for transferring manipulation
skills learned from in-the-wild demonstrations to real robot
environments, in the absence of teleoperation data.

The demonstration adaptor of AirExo-2 are necessary
for achieving satisfactory policy transfer (Q5). We use the
Collect Toys task to illustrate the importance of the demon-
stration adaptor in learning from in-the-wild demonstrations.
Operation space adaptors are necessary for policy transfer,
so we include them in each variant and ablate whether to
use visual adaptors (image adaptor and depth adaptor) to
transform visual observations into the robot domain. As shown
in Tab. III, performance drops significantly when learning
directly from raw in-the-wild demonstrations without visual
adaptors, indicating that the visual gap between in-the-wild
and robot demonstrations is substantial and cannot be ignored.
Despite this gap, our RISE-2 policy still achieves performance
comparable to RISE even without demonstration adaptors
(52.5% v.s. 57.5%), showcasing its strong generalization abil-
ity in learning from cross-embodiment data. These results also
validate the authenticity and reliability of the pseudo-robot
demonstrations transformed by AirExo-2, confirming that they
accurately capture real-world interactions and are effective for
training generalizable policies. This highlights the potential of
combining RISE-2 and AirExo-2 as a scalable framework for
imitation learning using in-the-wild demonstrations.
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Fig. 8: Qualitative Results of the Serve Steak Task. The system is evaluated on a challenging, long-horizon, and contact-rich task, Serve
Steak, in which the robot needs to scoop a steak from a pan using a spatula and slide it onto a plate. This task requires precise control
across multiple complex steps. We first collect in-the-wild human demonstrations (top) and convert them into pseudo-robot demonstrations
(middle) using AirExo-2. These demonstrations are then used to train the RISE-2 policy, which is successfully deployed on a real robot to
complete the task autonomously (bottom).

F. Qualitative Results on Challenging Tasks

We additionally evaluate the whole system on a challenging
long-horizon and contact-rich task Serve Steak, as shown
in Fig. 8. This task involves multiple challenging steps that
require intricate robot actions: (1) grasp the plate using the
left arm; (2) grasp the spatula using the right arm; (3) scoop
up the steak in a pan with the grasped spatula; (4) lift the
steak with the spatula and slide it onto the plate.

The integration of the AirExo-2 system with the RISE-2
policy enables the robot to tackle the challenging, long-
horizon, and contact-rich task without requiring robot
demonstrations, highlighting its potential for a wide range
of manipulation tasks (Q6). After training RISE-2 with
only 50 in-the-wild demonstrations collected and processed
by AirExo-2, we successfully deployed the policy on a real-
world robot platform, where it can complete the entire task
automatically with no robot data, as illustrated in Fig. 8. This
result underscores the effectiveness of the proposed system
in learning from a limited number of human demonstrations
while generalizing to real-world scenarios, demonstrating its
applicability to various complex manipulation tasks.

Notably, we expect the system’s performance to further im-
prove as we scale up in-the-wild demonstrations. The synergy
between scalable data collection (AirExo-2) and generalizable
policy learning (RISE-2) suggests a promising trajectory to-
ward more efficient and generalizable robotic manipulation.

Expanding this approach could enable autonomous robots to
acquire increasingly complex skills with minimal human su-
pervision, unlocking new possibilities for deployment in real-
world environments with high variability and task diversity.

VI. SYSTEM ANALYSIS

In this section, we conduct thorough analyses of our pro-
posed AirExo-2 system, including:
A1. Is AirExo-2 easy to use for in-the-wild data collection?
A2. How does the data collection speed of AirExo-2 compare

to the data collection speed of teleoperation?
A3. How accurate is the AirExo-2 system in recording actions

compared to previous handheld devices used for in-the-
wild demonstrations?

A. User Study

We conduct a user study to comprehensively evaluate the
intuitiveness and data throughput of several demonstration
collection methods, including end-effector pose teleopera-
tion with haptic device [25], joint-space teleoperation with
AirExo [26], and AirExo-2 in-the-wild data collection. The
study involves 20 participants with varying levels of expe-
rience in robot demonstration collection, including 14 men
and 6 women, aged between 21 and 35 years old. The
participants are asked to collect one demonstration for the
Collect Toys task using all three data collection platforms



mentioned above. Before collection, participants are given 3
minutes to familiarize themselves with each data collection
platform. We then record the time each participant spends
collecting one demonstration. After completing the collection,
we designed a questionnaire to gather their feedback on the
three data collection methods.

Method Completion
Time (s) ↓

Average Rank ↓ Preference
Score ↑Intuitiveness Learnability

EE pose teleop 46.06±27.21 3.00 / 3 2.95 / 3 29.75
joint-space teleop 17.31±5.055 1.80 / 3 2.00 / 3 49.58
AirExo-2 (ours) 5.66±1.978 1.20 / 3 1.05 / 3 83.00

TABLE IV: User Study Results. Collecting in-the-wild demon-
strations with AirExo-2 enhances intuitiveness and enables higher
data throughput. Users assign higher preference scores to AirExo-2
compared to other teleoperation data collection methods.

The AirExo-2 system is intuitive and user-friendly,
making it a good choice for large-scale demonstration
collection (A1). From Tab. IV we can observe that both
experienced participants and novices in demonstration col-
lection find AirExo-2 more intuitive and easier to learn than
teleoperation. Participants significantly prefer AirExo-2 for in-
the-wild collection over both joint-space and end-effector pose
teleoperation. This ease of use translates to faster onboarding
and smoother operation, making it an excellent tool for diverse
users and ensuring more efficient data collection in real-world
environments. We believe that the accessibility of AirExo-2
contributes to more consistent and high-quality demonstra-
tions, reinforcing its value for large-scale, real-world tasks.

Collecting demonstrations with AirExo-2 is more effi-
cient compared to teleoperation (A2). We assume that the
task completion times for different data collection methods
follow Gaussian distributions, which is supported by the
Shapiro-Wilk test results. To compare the efficiency of in-
the-wild demonstration collection with AirExo-2 versus tele-
operated demonstration collection with AirExo, we conduct
Welch’s t-test. Based on the results presented in Tab. IV,
we find that AirExo-2 significantly outperforms AirExo joint-
space teleoperation in terms of time efficiency, with a p-
value of 8.32×10−10 < 0.001. Additionally, end-effector pose
teleoperation is found to be the least efficient for collecting
demonstrations. This highlights the advantage of AirExo-2 in
streamlining the data collection process and improving the
overall efficiency of task demonstrations.

B. Accuracy Analysis

Action accuracy is crucial for directly learning from in-
the-wild demonstrations, ensuring that the policy can learn
precise actions necessary for successful task execution. Hand-
held devices [18, 22, 82, 83, 109] typically rely on visual
SLAM for camera pose trajectory estimation, whereas our
AirExo-2 system leverages its mechanical design and forward
kinematics to calculate the robot end-effector trajectory. In
this analysis, we select UMI [18] as a representative handheld
data collection device and compare its action accuracy with

that of our AirExo-2 system. We have designed 3 tracks to
evaluate the translation accuracies of both systems. Please refer
to Appendix G for more details.

Device Average Error (mm) ↓ Max Error
(mm) ↓

Track 1 Track 2 Track 3

UMI [18] 7.476±1.840 10.665±4.543 8.360±2.381 20.002
AirExo-2 (ours) 1.213±1.332 1.952±0.744 1.903±1.736 6.134

TABLE V: Action Accuracies of Different In-the-Wild Demon-
stration Collection Systems. AirExo-2 exhibits superior action
accuracies compared to handheld devices like UMI.

The AirExo-2 system demonstrates superior accuracy in
recording actions compared to handheld devices, making it
well-suited for in-the-wild demonstration collection across
a wide range of manipulation tasks (A4). The error results
in Tab. V show that AirExo-2 achieves significantly lower
action errors (approximately 2mm on average) compared to
UMI [18], which relies on visual SLAM and IMU sensors
for camera pose estimation. This highlights the advantage of
AirExo-2, as its mechanical design and forward kinematics
provide higher precision than vision-based SLAM methods.
These findings confirm that AirExo-2 is a reliable and accurate
tool for capturing high-fidelity motion data, making it an
effective solution for large-scale in-the-wild demonstration
collection, particularly for fine-grained manipulation tasks that
require high precision.

VII. LIMITATIONS AND FUTURE WORKS

While we utilize the proposed demonstration adaptor to
visually transform in-the-wild demonstrations collected by
AirExo-2 into pseudo-robot demonstrations, these transformed
demonstrations are primarily useful for generalizable policies.
To enhance the applicability of the pseudo-robot demonstra-
tions to a broader range of policies, future work could explore
the integration of demonstration augmentation methods, such
as novel view synthesis [12, 80, 88, 89], into the demonstration
adaptor to improve the diversity of the demonstrations, making
them more versatile for various policy learning.

As demonstrated by several works [18, 38, 51, 109], the
in-hand image is a semi-unified observation modality across
different embodiments. Our case study also reveals that com-
bining in-hand observations can strengthen the performance
of various 2D policies. However, the current AirExo-2 system
does not include in-hand cameras. Although we have designed
connectors to integrate them with the exoskeleton, calibrating
the in-hand cameras with the exoskeleton remains challenging,
making it difficult to adapt the in-hand images into the
robot domain. Future work could explore effective methods
for adapting in-hand images collected by AirExo-2 to the
robot domain, or investigate strategies for leveraging the semi-
unified in-hand observations in policy design.

Another limitation lies in the end-effector. The current
AirExo-2 system only supports parallel grippers as end-
effectors, limiting its applicability in more dexterous tasks. Fu-
ture work could integrate the AirExo-2 system with dexterous



hands and their corresponding exoskeletons, enabling more
complex manipulation capabilities and expanding the range of
tasks the system can effectively perform.

VIII. CONCLUSION

This paper introduces AirExo-2, a novel system designed
for large-scale in-the-wild demonstration collection and adap-
tation using low-cost exoskeletons. By incorporating a demon-
stration adaptor, AirExo-2 enables the visual and kinematic
transformation of in-the-wild demonstrations into pseudo-
robot demonstrations, which can then be directly applied
to downstream imitation learning tasks. We also propose a
generalizable policy, RISE-2, which effectively integrates both
2D and 3D perception, demonstrating exceptional performance
in both in-domain and out-of-domain scenarios.

Further experiments demonstrate that when trained ex-
clusively on pseudo-robot demonstrations generated by the
AirExo-2 system — without using any robot demonstrations
— the policy achieves satisfactory performance during zero-
shot deployment on a real-world robot platform. This high-
lights the potential of combining AirExo-2 and RISE-2 as a
scalable and promising alternative to traditional teleoperation-
imitation pipelines, providing a more efficient, cost-effective
solution for large-scale, generalizable robotic imitation learn-
ing. Together, these results open new possibilities for trans-
ferring manipulation skills from in-the-wild environments to
real robots, without the need for extensive robot-centric data
collection.
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APPENDIX

A. AirExo-2 Hardware Design

To collect in-the-wild data that is easy to transform into
pseudo robotic data, a highly precise data collection system
is essential to ensure demonstration quality for downstream
policy learning. From the hardware perspective, AirExo [26]
has several key limitations:

H1. Most of its components are 3D-printed using polylactic
acid (PLA), leading to low rigidity and susceptibility to
structural deformation.

H2. Unlike typical robots with constrained ranges, its joints
can rotate beyond 360◦, potentially reaching positions the
robot cannot achieve.

H3. Although portable, inevitable body movements during op-
erations can cause its base to shift, leading to inaccurate
action recording.

H4. Its gripper lacks smooth control, leading to potential
jamming under clamping forces.

H5. Its shaft connects directly to the encoder, with wires
routed along its side. Joint movement can cause constant
friction and stretching, risking wire breakage or short
circuits over long-time use.

During demonstration collection using teleoperation, most
of the above issues (except H4) might not significantly impact
data acquisition, as the human operator can adjust their actions
based on the movements of the robotic arms. However, during
the in-the-wild demonstration collection, these drawbacks can
substantially affect motion capture accuracy and may result in
invalid or unusable demonstration data.

The hardware design of AirExo-2 is primarily driven by the
limitations mentioned above. To ensure seamless integration
with the learning process from in-the-wild demonstrations, we
design the exoskeleton to match the dimensions of the robotic
arm in a 1:1 ratio. This design choice helps avoid unnecessary
obstacles in direct learning from the collected demonstrations.
The key hardware designs are outlined as follows.

Enhanced Overall Structural Rigidity (H1). In AirExo,
the links connecting two consecutive joints are the most prone
to deformation. In AirExo-2, we replace the 3D-printed parts
with 20x20 European standard aluminum profiles, providing
significantly higher strength at a very low cost. For the joints,
the outer shell is 3D-printed using PLA-CF, a carbon fiber-
reinforced PLA material with higher hardness. Inside the joint,
larger bearings are used to further enhance structural rigidity.
Together with the improved links, the hardware upgrade sig-
nificantly increases the overall structural rigidity of AirExo-2,
making the exoskeleton more durable, and thereby improving
data collection accuracy.

Hollow Rotating Disc and Side-Mounted Encoder (H5).
As shown in Fig. 9, this design features an encoder mounted
on the side of the joint, which uses a gear mechanism to
translate the rotational angle of the rotating disc into encoder
readings. The hollow disc design allows wires to pass through,
preventing them from stretching during rotation and thereby

global
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Fig. 9: Hardware Design of AirExo-2. The AirExo-2 demonstra-
tion collection platform consists of a mobile base and a dual-arm
exoskeleton. Global cameras can be mounted on top of the platform
to capture visual observations during data collection. The detailed
joint structure is shown on the right side, featuring two key designs:
hollow rotating disc and side-mounted encoder; joint with angle limit
and adjustable friction.

extending their lifespan. Additionally, the side-mounted en-
coder simplifies maintenance, enabling easy debugging and
replacement without the need to disassemble the joint.

Joint with Angle Limit and Adjustable Friction (H2).
This structure consists of a rotating disc with a grooved
track and a friction pad that can be embedded into the track.
Together, they allow for adjustment of the limiting angle,
ensuring that the motion range of the AirExo-2 joint exactly
aligns with the corresponding joint range of the robot. As
illustrated in Fig. 9, the rotating disc, pre-joint, and post-
joint are connected through bearings, allowing the rotational
motion of the joint to be directly transmitted to the track. For
demonstration collection, excessive or insufficient friction in
the rotation of the joints is undesirable. Hence, the friction
force of the joint in AirExo-2 can be adjusted by turning
the screw on the outer shell, which compresses the friction
pad. This design ensures optimal friction for comfortable and
accurate data collection.

Smooth Gripper Control (H4). Following [18, 59], the
gripper of AirExo-2 incorporates a linear guide, with the
fingers mounted on a sliding block. This design allows for
smoother opening and closing of the gripper, ensuring it
operates seamlessly even under significant clamping forces
without any stalling.

Mobile Data Collection Platform (H3). Portability is
crucial for in-the-wild data collection. However, to address
the issue of base movement caused by the body motion of the
operator, we mount AirExo-2 on a mobile aluminum profile
stand, as shown in Fig. 9. This setup ensures stability of the
base during demonstration collection while maintaining the
flexibility needed for mobility, enabling large-scale demonstra-



tion collection in real-world environments. An Intel RealSense
D415 camera is set up on the top of the mobile platform to
capture global observations. We also designed two optional
camera mounts (though not used in this paper) for the future
integration of in-hand cameras on the top of both grippers.

B. AirExo-2 Calibration
The AirExo-2 system requires two types of calibration

simultaneously: (1) aligning the zero positions of each joint
with the corresponding robot joint, and (2) determining the
transformation between the global camera and the AirExo-
2 base. To address these challenges, we propose a two-stage
calibration process.

Initial Calibration. For initial calibration, the former cali-
bration can be achieved by manually adjusting the joints to
approximate the zero position using specialized 3D-printed
tools and reading the encoder values, obtaining {q̃left

calib, q̃
right
calib}.

The latter calibration can be done by attaching an ArUco
calibration marker board with a known position on the base
Tbase

marker and performing optical calibration using the OpenCV
library [7], obtaining Tcamera

marker . Thus, the transformation can
calculated as[

t̃camera
base | r̃camera

base
] def
= T̃camera

base = Tcamera
marker

(
T̃base

marker

)−1
(6)

However, this approach introduces errors due to human
observation, calibration board misalignment, and optical in-
accuracies. In a chained system like AirExo-2, these errors
may propagate and amplify across joints, leading to significant
cumulative inaccuracies in the end-effector pose. Therefore,
fine-grained calibration is essential to ensure precise and
consistent alignment between AirExo-2 and the camera frames
during demonstration collection.

Calibration via Differentiable Rendering. In the second
stage, inspired by prior works [13, 36, 61], we use differen-
tiable rendering [48] to refine the initial calibration. Training
samples are obtained from a single human play trajectory with
AirExo-2. Using the joint states and calibration parameters,
we render the system mask and depth via a differentiable
rendering engine [55]. Calibration parameters are optimized by
minimizing discrepancies between the rendered and annotated
system masks, as well as between the rendered and observed
depths. Pseudo-ground-truth masks are manually annotated
with SAM-2 [78]. This iterative refinement compensates for
errors that accumulate across joints, ultimately improving the
overall accuracy.

Specifically, we define p, the calibration parameters to be
optimized through differentiable rendering, as

p def
= {∆tcamera

base ,rcamera
base ,∆qleft

calib,∆qright
calib} (7)

where parameters, except for the base-to-camera rotation, are
represented as deltas relative to the initial calibration results.
The base-to-camera rotation is expressed in a 6D format [119].
Thus, the final calibration results can be calculated as

Tcamera
base =

[
t̃camera
base +∆tcamera

base | rcamera
base

]
, (8)

qtype
calib = q̃type

calib +∆qtype
calib, type ∈ [left, right], (9)
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Fig. 10: Calibration via Differentiable Rendering. The parameters
in orange denote the calibration parameters to be optimized via
differentiable rendering.

and the initial parameter values are set as

p0 = {0, r̃camera
base ,0,0} (10)

For the optimization process, we first record a single in-
the-wild play trajectory, in which the human operator uses the
AirExo-2 to adopt various poses. During trajectory recording,
ensure that all parts of the AirExo-2 remain above the human
hands and arms from the camera’s perspective. After data
collection, we sample approximately 40 image-joint pairs
from the trajectory, denoted as {Ii,di,qleft

i ,qright
i }Nc

i=1, where Nc
represents the total number of training samples for calibration,
and Ii and di are the RGB and depth images of the i-th sample,
respectively. Subsequently, we utilize SAM-2 [78] to annotate
the AirExo-2 mask Ma

i and the depth mask Md
i ⊆ Ma

i for
each sample i, as shown in Fig. 10. The first mask provides
supervision for the rendered AirExo-2 mask, while the second
mask is used to select the valid depth information that serves
as the supervision signal.

The differentiable rendering engine Redner [55] is employed
to render the AirExo-2 mask M̂a

i and AirExo-2 depth d̂i using
the calibration results and joint information:

M̂a
i , d̂i = R(p;qleft

i ,qright
i , T̃ camera

base , q̃left, q̃right), (11)

where the rendering engine R(p; · · ·) computes the gradients
of the calibration parameters p during the rendering process,
and T̃ camera

base , q̃left, q̃right represent the initial calibration results.
The rendered AirExo-2 mask M̂a

i is supervised by the
human-annotated pseudo-AirExo-2 mask Ma

i , and the rendered
AirExo-2 depth d̂i is supervised by the camera depth di within
the region of the human-annotated depth mask Md

i . The depth
mask ensures that only accurate depth information contributes
to the loss. Thus, the objective can be written as:

L =
1

Nc

Nc

∑
i=1

(
β ·

∥∥Ma
i − M̂a

i
∥∥2

+
∥∥di − d̂i

∥∥2 ◦Md
i

)
, (12)

where β represents the weighting coefficient, and ◦ denotes the
mask-apply operation. In practice, we set β = 5, use Nc = 40
samples for optimization, and employ the Adam optimizer [53]
with a learning rate of 10−4 for 1000 iterations to fine-tune
the calibration results.



C. Calibration Analysis

Apart from the two-stage calibration process described in
Appendix B, we implement several calibration alternatives,
including (1) initial calibration, which uses the calibration
results from the first stage without further fine-tuning; (2)
human annotation, where a human operator utilizes a real-
time GUI program to manually adjust the calibration parame-
ters to align the rendered AirExo-2 contour with the visually
observed contour from camera frames; and (3) two-stage
calibration (mask only), which fine-tunes the calibration
results by using only mask differences as supervision.

Method Difference ↓

Mask (%) Depth (mm)

Initial Calibration 1.71±0.37 21.6±5.2
Human Annotation 2.31±0.31 31.2±6.4

Two-Stage Calibration (mask only) 1.10±0.26 17.6±4.1
Two-Stage Calibration (mask + depth) 0.78±0.25 14.0±2.9

TABLE VI: Calibration Analysis Results. Using our proposed
two-stage calibration, we achieve higher accuracy than both initial
calibration and human annotations. Including depth as additional
supervision also helps the optimization process convergence.

Our two-stage calibration process achieves more accu-
rate results compared to other alternatives. As reported
in Tab. VI, our two-stage calibration process achieves the
lowest error rates, with a 0.78% mask difference and 14.0
mm depth difference, yielding more precise calibration. It’s
worth noticing that the depth difference here does not fully
represent action accuracy because commercial depth sensors
can produce noisy depth maps. Please refer to §VI-B for more
details about action accuracy. Interestingly, human annotation
performs even worse than initial calibration, mainly because
annotators can only rely on 2D visual information to adjust
calibration parameters. This limitation makes it difficult to
accurately estimate depth information, leading to larger er-
rors. Conversely, our two-stage calibration process explicitly
models 3D information via differentiable rendering, offering a
more reliable and precise solution for calibrating the AirExo-2
system.

D. Demonstration Adaptor

Semi-Automatic SAM-2 Annotations. In the image adap-
tor, we initially annotate the hand mask (and, if visible, the
head mask) manually using SAM-2 [78]. However, after a few
annotations, we can fine-tune SAM-2 on the human-annotated
samples, enabling automated labeling. This significantly re-
duces human effort and streamlines the demonstration adaptor
process, making it nearly fully automated.

ControlNet Training. We train a ControlNet [113] based on
the Stable Diffusion 1.5 [79] model to generate photo-realistic
robot images from rendered robot images. To collect training
samples, we use teleoperation to gather a small amount of play
data, where the robot is teleoperated to move randomly within
an empty workspace while recording RGB-D images and

corresponding joint states. This ensures a diverse dataset of
robot arm configurations, free from occlusions or distractions.

Notably, these training samples are platform-specific but
task-invariant, meaning they only need to be collected once
per robot platform, and the trained ControlNet can be used
across all tasks. This also opens up the possibility of directly
transforming our in-the-wild demonstrations to other robotic
arms without the need to design new exoskeletons that match
specific robots.

For training, we use a batch size of 88 and a learning
rate of 10−5, while keeping other hyperparameters at their
default settings. We use 50 DDPM sampling steps [34] with
a guidance scale of 9.0 [35]. The prompt for generating robot
images for our robot platform is set to:

robotic arms, dual arm, industrial robotic manipulator,
metallic silver color, mechanical joints, precise mechanical
details, gripper end effector, high-quality photo, photorealistic,
clear and sharp details

E. RISE-2 Implementation

Data Processing. The color image is resized to 448×252
for DINOv2 backbone [70] and 640×360 for ResNet-18
backbone [30]. The depth image is resized to 640×360 before
creating the point cloud. The camera intrinsics are adjusted
accordingly. Both the point clouds and actions are in the cam-
era coordinate system. The point cloud is down-sampled with
a voxel size of 5mm. For the data collected with teleoperation,
we crop the point clouds using the range of x ∈[-0.7m, 0.7m],
y∈[-0.3m, 0.55m] and z∈[0.9m, 1.55m]. For the data collected
with AirExo-2, we crop the point clouds using the range of
x ∈[-0.7m, 0.7m], y ∈[-0.3m, 0.45m] and z ∈[0.75m, 1.4m].

The robot trajectories are sampled using differences of
translation, rotation and gripper width to remove redundant
actions. For the action at two adjacent timesteps, if all the
differences are less than the thresholds, only the first action
is retained. The threshold for translation and gripper width is
5mm and the rotation threshold is π/24.

Network. The sparse encoder adopts a ResNet-like archi-
tecture built upon MinkowskiEngine [19]. The dense encoder
adopts DINOv2-base [70] as the 2D backbone with the output
channel of 128. In the spatial aligner, we use M = 3 for
feature alignment. The aligned features are fused by shared
MLPs with the size of (256, 256, 256), and then fed into
another sparse network. The two sparse networks are detailed
in Tab. VII. The transformer in action generator contains 4
blocks, in which we set dmodel = 512 and dff = 2048. The
channel number of the readout token is 512. The diffusion
head adopts a CNN implementation [17] with 100 denoising
iterations in training and 20 iterations in inference. The output
action horizon used in experiments is 20.

Training. RISE-2 is trained on 4 Nvidia A100 GPUs. The
batch size is 240, the initial learning rate is 3e-4, and the
warmup step is 2000. We employ a cosine scheduler to adjust
the learning rate during training. 20% of the color images
are augmented using a color jitter with (brightness, contrast,
saturation, hue) parameters set to (0.4, 0.4, 0.2, 0.1).



Fig. 11: Visualization of Sparse Semantic Features. The colors are obtained by performing PCA on the features. The original sparse semantic
features are aligned to the input point cloud using weighted spatial interpolation function in the spatial aligner for clearer visualization.

Layer Name Sparse Encoder Spatial Aligner

init conv
k = [3,3,3], c = 32,

-d = 1, s = 1
2x mean pooling

conv1 k = [3,3,3], c = 32, k = [3,3,3], c = 256,
d = 1, s = 1 d = 4, s = 4

conv2 k = [3,3,3], c = 64, k = [3,3,3], c = 256,
d = 2, s = 1 d = 1, s = 2

conv3 k = [3,3,3], c = 128, k = [3,3,3], c = 512,
d = 4, s = 1 d = 1, s = 2

conv4 k = [3,3,3], c = 128, k = [3,3,3], c = 512,
d = 8, s = 2 d = 1, s = 2

final conv k = [1,1,1], c = 128, k = [1,1,1], c = 512,
d = 1, s = 1 d = 1, s = 1

TABLE VII: Sparse Convolutional Network Parameters of the
RISE-2 Policy. Both sparse encoder and spatial aligner utilize
MinkResNet [19] for point cloud encoding. k,c,d,s stand for the
kernel size, output channel number, dilation and stride in the convo-
lutional layers respectively.

F. Action Representations

We conduct additional experiments on action representa-
tions for the Collect Toys task, comparing relative and absolute
action representations. The results in Tab. VIII show that
while relative action representation sometimes yields better
results, absolute action representation provides more stable
performance, particularly in terms of generalization. There-
fore, we use absolute action representations throughout our
experiments, except for the case study in §V-B.

G. Accuracy Analysis

To evaluate action accuracy, we designed a special evalu-
ation board with three tracks, as illustrated in Fig. 12. Each
track has fixed holes spaced 2 cm apart. We created custom
connectors for both the AirExo-2 and UMI [18] that fit into

Method Action Repr. Success Rate (%) ↑

in-domain background object

DP [17] relative 37.5 20.0 5.0
absolute 40.0 12.5 5.0

CAGE [105] relative 72.5 32.5 35.0
absolute 65.0 45.0 42.5

TABLE VIII: Evaluation Results of Different Action Representa-
tions on the Collect Toys Task. Absolute action representation leads
to a more stable performance.

these fixed holes, allowing us to collect position data. By
sequentially placing the connectors into each fixed hole along
the track, we can calculate the relative movement distance
between two adjacent fixed holes and compare it with the true
value (20 mm) to calculate the error.

Tr
ac

k 
1

Track 2

Track 3

Fig. 12: The Designed Evaluation Board for Accuracy Analysis.



H. Visualization of Sparse Semantic Features

Fig. 11 visualizes the sparse semantic features obtained from
the dense encoder by projecting the 2D feature map to 3D form
using the reference coordinates. The sparse semantic features
are aligned to the input point cloud using weighted spatial
interpolation detailed in §IV-B.

Although the 2D feature map output by the dense encoder
is in low resolution (32×18), we still observe clear and
distinguishable continuous feature variations on the aligned
features, where the targets at the current step can be easily
identified from the entire scene. Such characteristic ensures
precise feature fusion in the spatial domain. Additionally, we
find that the features from DINOv2 change significantly as the
task progresses, enabling the model to clearly understand the
global state at the current time.
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